Abstract

Background: The Canadian Bacterial Surveillance Network (CBSN) has been monitoring trends in antibiotic resistance in pneumococcal isolates in Canada since 1993.

Methods: CBSN is a collaborative network of Canadian microbiology laboratories that systematically sample pneumococci for reference with minimal microsaturation testing performed in CSL standards. Non-enzymatic breakpoints were used for interpretation of ampicillin and cotrimoxazole resistances. Methicillin breakpoints were used for penicillin. Serotype and resistance to erythromycin were determined using latex pneumococcal antisera (Bio-Rad Seramun Institute, OK) and Quellung reaction as required.

Results

From 2000 to 2010, 95% of PCV7 isolates from sterile sites were collected, including M60 (10.4%) from blood, 274 (2.6%) from C/S, 167 (1.7%) from pleural fluid, and 274 (2.4%) from other sterile sites. All isolates underwent susceptibility testing and serotyping. PCV7 resistance was common in 19A cases (19%) and 6A (14%); in cases of adult (1:34y) cases 45.2%, and older adults (≥65y) 31.7%. Overall, 60.6 of isolates were from Ontario. 181% from the Prairies/Northwest Territories. 8.9% from Atlantic provinces, 6% from Quebec, and 5% from British Columbia/Fusion.

In 2009/2010, the most common serotypes in paediatric and adult IPD were 19A (30.4%), 6B (9.6%), respectively, 16 (15.5%-15.8%), 22F (8.8%), and 1 (15.8%). Serotypes 19A was the most common in samples from blood (18.8%), C/S (14.7%), and other sterile sites (11.5%). Serotypes 31 was most common from pleural fluid (17.4%).

From 2000 to 2010, among paediatric isolates, the percent of PCV7 serotypes decreased (83.9% to 3.3%) while the percent of PCV10/not7 serotypes increased from 0.8% to 21.5%, and the percent of NPCV13/not10 serotypes increased from 8.3% to 39.7%. The percent of PCV10/not10 serotypes also increased from 7.0% to 31.5%. Similar trends were seen in adult isolates although the decrease in the proportion of PCV7 serotypes has been slower (Figure 2).

Acknowledgements

This work has been supported in part by an unrestricted grant from Pfizer Canada Inc.

References